Silicone rubber for energy harvesting: Material and process development and testing of dielectric elastomers

Johannes Ziegler

Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany

Silicone Elastomers World Summit 2018

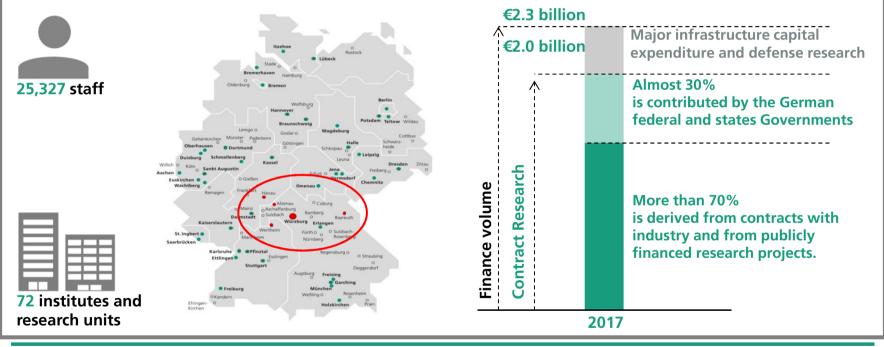
27 - 28 November | Milan, Italy

© Fraunhofer

Outline

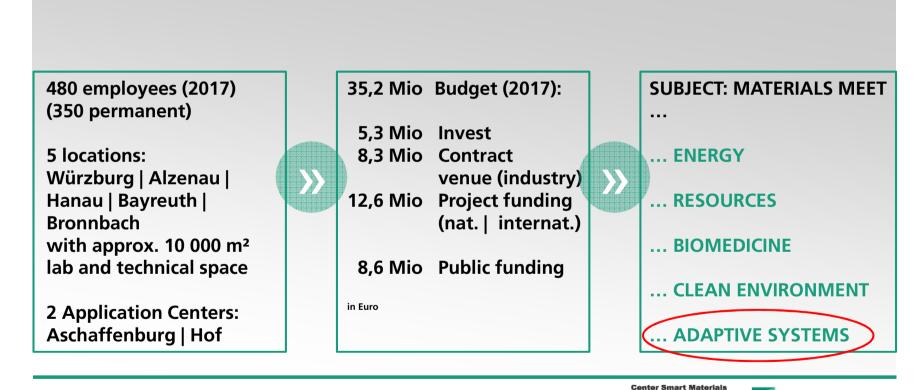
- Overview of Fraunhofer Society and Fraunhofer ISC
- Rubber for energy harvesting: operating principle
- Research project: "DEGREEN"
 - Material development
 - Process development
 - Testing of dielectric elastomers
- Conclusion

© Fraunhofer



The Fraunhofer society at a Glance

The Fraunhofer-Gesellschaft undertakes applied research of direct utility to private and public enterprise and of wide benefit to society.



© Fraunhofer

- 3 -

... Facts: Fraunhofer Institute for Silicate Research ISC

- 4 -

🗾 Fraunhofer

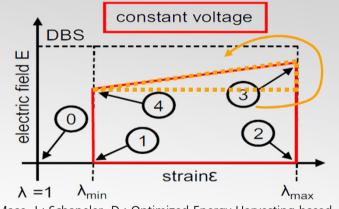
Partner der Wirtschaft

Rubber for energy harvesting: operating principle **Using dielectric elastomers**

- Dielectric elastomers consist of a very stretchable elastomer film (e.g. silicone, polyurethane), coated on both sides with highly stretchable electrodes (silicone rubber filled with carbon black, graphite, metal particles)
- Highly stretchable (up to 100 % elongation)
- Further applications of dielectric elastomers: actuator and mechanical sensor (pressure, strain)

Partner der Wirtschaft

- 5 -


Rubber for energy harvesting: operating principle **Using dielectric elastomers**

- Transformation of mechanical energy into electrical energy inside the dielectric layer
- Continuous stretching and relaxing of the dielectric elastomer while applying a constant voltage

- 6 -

- Electrical net energy gain by changing the capacitance of the dielectric elastomer
- Converted energy for one cycle:

$$\Delta W = \frac{1}{2} * \Delta C * U^2$$

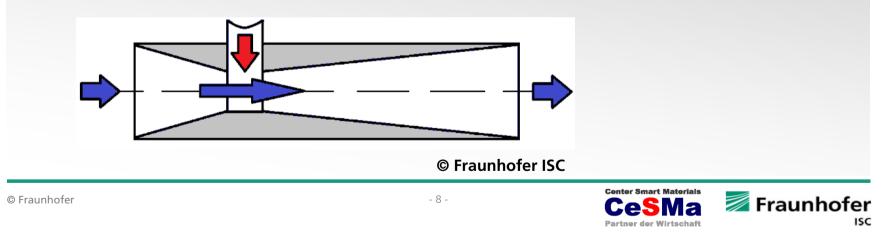
Graf, C.; Maas, J.; Schapeler, D.: Optimized Energy Harvesting based on Electro Active Polymers. 10th IEEE International Conference on Solid Dielectrics ICSD2010, pp. 752-756, 2010.

© Fraunhofer

DEG for energy harvesting

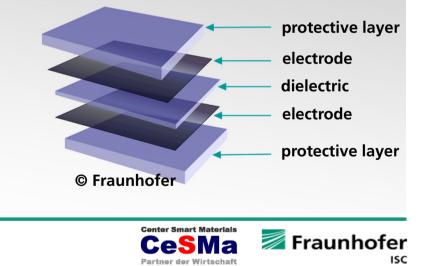
"DEGREEN": Use of Dielectric Elastomer Generators for Regenerative Energies

- Publicly funded by the Bavarian state
- Project term: 06/2012 05/2019
- Aim: development of energy converters based on dielectric elastomers for slow flowing waters
- The impact on landscapes, flow situations in rivers, restrictions of flora and fauna as well as noise nuisance have to be prevented as far as possible



DEG for energy harvesting

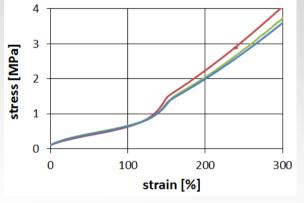
- The electrical energy is to be used for environmentally-friendly decentralized energy supply of e.g. remote areas or for the recharge of electric vehicles in rural areas
- Kinetic energy: water flow of small rivers
- Transformation of kinetic energy into negative pressure by using a venturi nozzle → negative pressure strains the rubber film biaxial


Material development

Extreme mechanical and electrical requirements: no commercial silicone material with flexible processing parameters available

→ Development of specific silicone formulations and adaptation to the processing for multilayer films

- 9 -


- Different developments of silicone formulations for
 - the dielectric/protective layers
 - the conductive layers
- Good adhesion between the layers

Material development

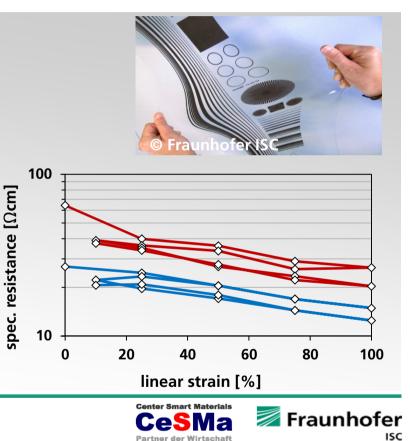
- Achieved dielectric properties:
 - High dielectric strength: 97,4 kV/mm
 - Adjusted elastic modulus: 1,2 MPa
 - Elongation at break > 300 %
 - Low processing viscosity 25 Pas @ 1 s⁻¹
 - High dielectric permittivity ε_r > 3 (concepts available)
 - Good behavior during fatigue testing
 - Adjusted curing parameters

🗾 Fraunhofer

ISC

Center Smart Materials

Partner der Wirtschaft


- 10 -

Material development

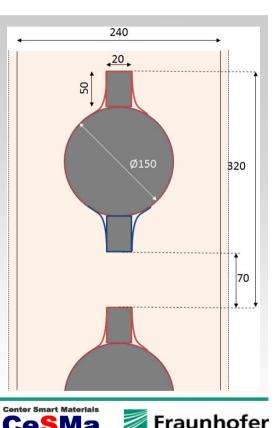
- Achieved electrode properties:
 - Low specific resistance, even under strain (up to 100 %)
 - Low increase of resistance during fatigue testing
 - Adjusted viscosity for processing with rotary screen printing unit

- 11 -

Adjusted curing parameters

Process development

- Modular roll to roll (R2R) unit for large scale production of thin multilayer films
 - Coating width up to 0.5 m
 - **Cleanroom for high quality layers**
- Slot die coating for dielectric layer
- **Rotary screen printing for patterned** electrode layer


© Fraunhofer

- 12 -

Process development

- Challenges in process development:
 - Stable multilayer coating process (Slot die and rotary screen printing)
 - Constant thickness of each layer
 - Purity of the dielectric layers (cleanroom and filtration)
 - Opaque and precise printing of the electrode layers
 - Precise winding and unwinding of the substrate
 - Electrostatic charge on top of the substrate

Partner der Wirtschaft

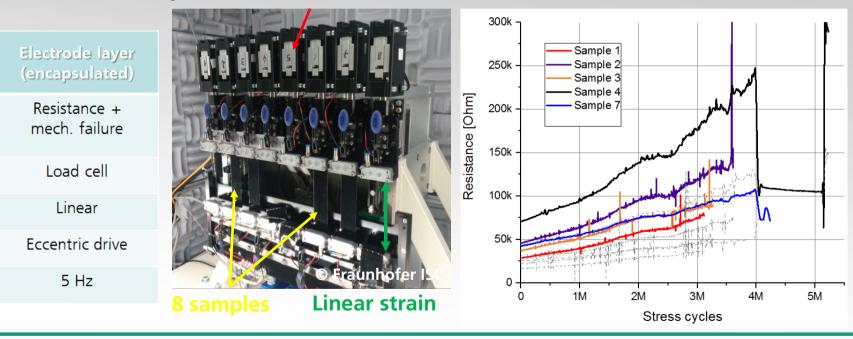
Process development

- Achieved multilayer properties:
 - Successfully coated 150 meters with almost 500 generator films
 - 11 layers processed: 5 electrode, 4 dielectric and 2 protective layers → 4 layers for converting energy in each rubber film!
 - Total thickness: 1.7 mm
 - Electric test with high voltage (un-stretched): 10 kV → yield of 90 %!

- 14 -

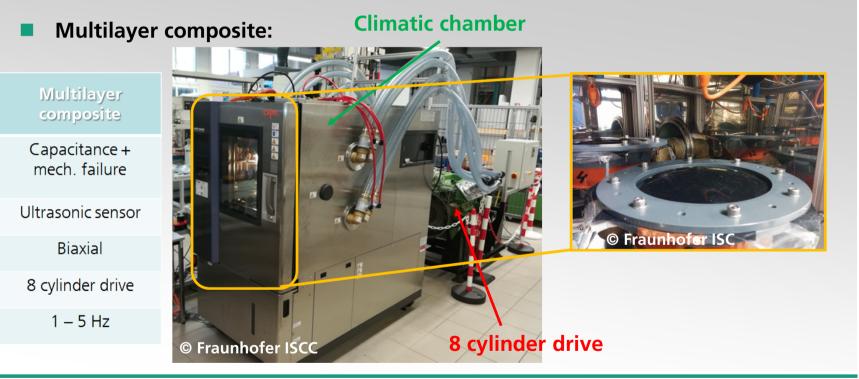
Testing of dielectric elastomers

Dielectric layer	Electrode layer (encapsulated)	Multilayer composite
Mech. failure	Resistance + mech. failure	Capacitance + mech. failure
Ultrasonic sensor	Load cell	Ultrasonic sensor
Biaxial	Linear	Biaxial
Compressed air	Eccentric drive	8 cylinder drive
< 1 Hz	5 Hz	1 – 5 Hz
	Mech. failure Ultrasonic sensor Biaxial Compressed air	Dielectric layer(encapsulated)Mech. failureResistance + mech. failureUltrasonic sensorLoad cellBiaxialLinearCompressed airEccentric drive


- 15 -

Testing of dielectric elastomers

Electrode layer: 8 Load cells


© Fraunhofer

- 16 -

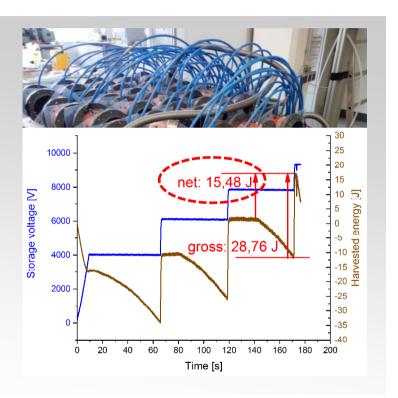
Testing of dielectric elastomers

© Fraunhofer

- 17 -

Testing of dielectric elastomers

- Multilayer composite mechanical stability:
 - Surface enlargement: 100 %
 - Frequency: 1 Hz
 - C-measurement not implemented yet
 - 8 samples
- Averaged cycles: at least 5 million cycles under biaxial load
- → No delamination!



Testing of dielectric elastomers

Latest high voltage test:

- Using compressed air for biaxial strain
- 74 rubber films
- Test voltage: 4 kV
- → Harvested Energy per cycle: 15,5 J

Center Smart Materials

Partner der Wirtschaft

© Fraunhofer

- 19 -

Advantages

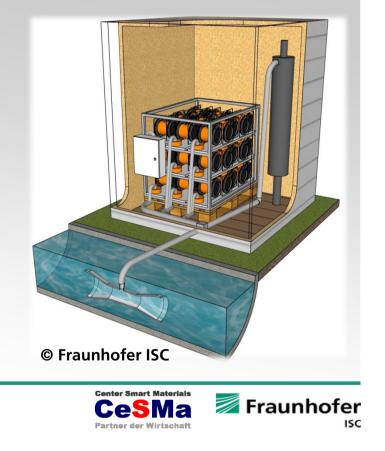
Advantages of using DEG:

- Minimum impact on environment: no dam and fish pass necessary
- Modular: adaptable to flow situation of small rivers
- Silent and self-sufficient system
- Continuous (24h/365d) and decentralized energy supply

Concept for 100 W unit LxWxH: 2,0 x 2,6 x 1,4 m³

© Fraunhofer

Outlook


For higher energy output increase of ...

electric field

conversion of water flow to negative air pressure

Converted energy for one cycle:

$$\Delta W = \frac{1}{2} * \Delta C * U^2$$

© Fraunhofer

- 21 -

Conclusion

Feasibility study about using dielectric elastomers for energy harvesting:

- Material development: long-term stable mechanical and electrical properties
- **Process development:**

high yield manufacturing process for complex multilayer system

Testing of dielectric elastomers:

high material fatigue of multilayer composite without delamination

\rightarrow Proven feasibility, further improvements must be made for commercialization

Interested?

We express our thanks to the Bavarian State Ministry of Economic Affairs, Energy and Technology for the funding provided!

Johannes Ziegler Fraunhofer Institute for Silicate Research ISC CeSMa / Team Manager Smart Soft Materials Neunerplatz 2 | D-97082 Würzburg

+49 931 4100-601 johannes.ziegler@isc.fraunhofer.de www.isc.fraunhofer.de

© A. Schollenberger für Fraunhofer ISC

Center Smart Materials