

Electroadhesive structures on flexible polymer substrates for gripping applications

DKT 2024 - 02.07.2024

Johannes Ehrlich, Marie Richard-Lacroix, Lukas Heydecker, Marius Winter, Johannes Gürke and Holger Böse

Fraunhofer Institute for Silicate Research ISC at a glance

Using chemical methods to make functional materials sustainable

Fraunhofer ISC ...

- Chemical material design and hybrid materials
- 4 locations (2x Würzburg, 1x Bronnbach/Wertheim, 1x Bayreuth)
- Around 400 employees
- Around € 30 million budget/year

"Bridging the innovation gap", from laboratory to pilot scale

... in the Fraunhofer focus areas

Focus materials developmetn, e. g. for

... BIOMEDICINE ... ENERGY ... CLIMATE | RESOURCES Regenerative therapies **ADAPTIVE SYSTEMS** Tissue-based modeling Efficient use of **Greater efficiency in** Stem cell processing heating processes renewables Sensors | Actuators 3R - alternative test Smart resources for and energy Fluid materials systems conversion **Materials | Processes** less CO₂ emissions Safe and powerful Green hydrogen for Microelectronics production, energy storage and Microoptics transportation, storage systems ...DIGITALIZATION BIOECONOMY **Laboratory and process** Bio-based | biocompatible | automation biodegradable materials **Materials Data Space Smart Textiles**

- public -

Center Smart Materials and adaptative Systems

- public -

Machine learning and AI for accelerated materials development

"invent a new way how to invent" – e. g. BiG-MAP

Accelerating material development

- Laboratory automation for material synthesis and development
- Modular and multifunctional robot system
- Framework as a physical interface in the digitalized material development of the future
- Machine learning algorithms coupled with physical models and data for remotecontrolled syntheses

Renewable resources for high-tech applications

e. g. CircEl-Paper – recyclable electronics on paper

Alternative approaches for the production of printed electronics to increase recyclability and environmental friendliness

- Paper as a substrate material for multilayer printed circuit boards
- Material and process innovations for higher integration density during printing
- Validation of recyclability

Electroadhesion – a brief introduction

Electroadhesive force F_e described by Hwang et al:

$$F_e = \frac{1}{2} \varepsilon \varepsilon_0 A \left(\frac{V}{d}\right)^2$$

ε: relative permittivity of the dielectric

 ε_0 : permittivity of the vacuum

A: electrode surface area

V: voltage difference

- public -

d: distance between the electrodes

Electroadhesion – state of the art

Electroadhesion is a quite old and known effect

© Fraunhofer ISC

- First applications for gripping with electroadhesion where published by GrabIT 10 years ago
- Interdigital structures on PCB's and non flexible polymer substrates

Electroadhesion – state of the art

- Omnigrasp as spinoff of EPFL introduced flexible patches for grasping
- Interdigital structures on elastic polymers (PDMS) or flexible Polymers (PI and PET) are used
- PDMS material provides sticky surfaces which could be problematic for lighter goods
- State-of-the-art motor grippers are used for size adjustment and peel-off effect

Electroadhesion – fabrication by doctorblading

Electroadhesive structures are produced by a bottom up, layer-by-layer doctorblading approach

- public -

- PDMS material is used as Polymer Substrate and Dielectric top insulation
- Carbon Black blended in PDMS binder is used as electrode layer
- The structure remains on the glass plate carrier until everything is finished.

Electroadhesion – fabrication

Laserablation:

- CO2 Laser
- Full area coated carbon electrode
- Ablation of variable interdig. structures

Silicone sample after Laserablation and before cleaning

Electroadhesion – fabrication

Unmodified with sticky silicone surface

Electroadhesion – Characterisation method

- Forced movement with a speed of minimum 3.6 mm/s. Variation possible
- Measurement with constant electroadhesive area or gradual reduction

- Higher shear force compared to PET
- DC applied voltage leads to a rapid shear force decrease
- Voltage frequencies between 3 and 10 Hz leads to optimal results
- -> Force highly dependent on humidity

(comparison Paper > PET > PP investigated)

- public -

PDMS; 0.3mm electrode distance; 3kV amplitude; PP sample

- Shear force comparable to PET but high influence of applied voltage form!
- High shear force peak at measurement start.
- Shear force decreases with increased frequency.
- DC measurement and 50 Hz
 AC lead to similar outcome
- -> Measurement dependency on humidity!
- -> polarity of sample has influence on the shear force (comparison Paper > PET > PP investigated)

- public -

- -> High peak forces at the beginning of the measurement
- -> Force highly dependent on humidity
- -> Saturation effect?

-> The polarity of the polymer has an influence on the shear force

(comparison Paper > PET > PP investigated)

Results suggests low amplitude of gripping forces for low polarity BUT...

- public -

- Highest shear force compare to PET, PP and paper
- High shear force peak at the beginning of the measurement
- DC measurement are on a lower shear force level.
- -> Measurement dependency on humidity! Here 40 rel% humidity
- -> polarity of sample has influence on shear force

(comparison PI > Paper > PET > PP investigated)

Electroadhesion – Electroadhesive applications

Electroadhesion – Electroadhesive gripping -> the Future with Unimorph DEA

Electroadhesion – Summary

- High gripping strengths possible on various types of organic surfaces! Depending on the applied electric field strength and form.
- Laser structuring of dielectric top layer reduces the stick slip effect without major influence of electroadhesion effect.
- Variable polymer substrates tested, different electroadhesive behaviors for a given set of parameters, BUT become comparable by parameter modulation.

SCIENTIFIC MAIN CONCLUSION:

- Electroadhesion is profundly related to the capacity to polarize the surface of the gripper surface and of the surface to be grasped.
- Effectively demonstrated as highly modulable to the amplitude of the surface polarity / dipole relaxation time.
- <u>Target:</u> similar forces reacheable for all surface type with basic parameter modulation.

OUTLOOK

- Combination of Unimorph DEA bending actuator with Electroadhesion for highly adjustable gripping in soft robotic.
- Establishment of additive processing for electroadhesive sample production.

